
H145 Mission System Documentation
This documentation is early and subject to change.

Last Update: 2022/6/23

Basic mission details
Loading missions from a server

Authoring mission packs

Mission sections
OBJECT

Special object variables
THREAD
OBJECTIVE

Commands
Control Flow

if
while
sleep

General
set
wait_for

Object & Thread Manipulation
create_object
destroy_object
move_object
create_thread

Cockpit Presentation
set_route
set_hover_display
set_df
set_message
set_ui
set_map
set_modal
Set_modal MODALBUTTON

Other
create_location
create_location ZONE

create_fire
remote_notify

Predicates
QUERY
TEST
LOCATIONREF
DATAQUERY

Dynamic Object Library
H145 Crew

Visual states
H145 Injured Human

Visual states
H145 Waving Civilian

Visual states
H145 Flare

Visual states

Creating Custom Dynamic Objects

Mission Server
Commands sent from the H145 to the mission server
Commands sent from the server to H145

Basic mission details
A mission json file is referred to as a Mission Descriptor. It can be loaded into H145 and then
operate alone while the user conducts the mission.

title Title used when displaying your mission in a list

aircraft Must be H145 (array of supported aircraft)

applicable Array of variants. If omitted, all variants will apply. Inapplicable missions will
be hidden in the mission catalog.

EMS
FIREFIGHTER

api_version Must be 0.1

start_info The start location or start locations can be specified. This will prevent
showing the mission in the Library as it has a natural start point on the map.
If you do not specify a start_info, then you will use the library to begin your
mission.

location
Specify [lat, lon] for the fixed starting location.

icon_src
Specify an HTTPS or data URI. This icon will be shown on the map.
Suggested size 32x32px.

query
A data query in the same format as used below in missions

Loading missions from a server
To load missions from a server, do not provide locations/objects/threads/objectives, instead
provide a URL which is a websocket server. When the user selects the mission your server will
be contacted and at that point you will be able to manage the mission system indefinitely until
the user selects another mission manually.

url "localhost:40510"

Authoring mission packs
Missions can be added to any other Community package or be authored alone, the only thing to
do is create an hpgmission folder within your package, and place a folder hierarchy below
with your mission json files. All contents (folders and json files) below hpgmission across all
Community packages will be merged into the catalog list. Feel free to create a folder structure
for regions or otherwise create organization.

Mission sections
locations Table of locations referenced throughout the mission file. These are

locations like “accident_site” or “hospital_helipad” that mark the coordinates.
You can easily copy/paste a location from Bing maps or Google maps by
right clicking and selecting the coordinates from the menu.

objects Table of dynamic objects created when the mission starts. The objects have
a title which is what identifies them in MSFS (like an airplane), and they have
a default location you may place them at.

threads Table of background execution threads which occur regardless of the current
objective. This allows parallel processing of logic. You may wait for a specific
variable to be true, enter some processing, and then quit forever or start the
process again. This can be used to design triggers and add other logic to
your mission, like enabling a sequence of events only when the user enters
an area, regardless of where they are in the mission objective list.

objectives List of Sequential tasks the user will work through. Every mission has at least
one objective and when the list of objectives is complete, the user has
finished the mission.

Each objective itself is a set of commands which execute sequentially. You
can direct the user to an area and then proceed to the next objective only
when they have arrived at the area of interest.

userActions TODO - Not yet documented

OBJECT
Objects are created when the mission starts and manipulated throughout the mission. The VAR
1 variable is commonly used to configure the visual state of the object.

title string Title from an aircraft.cfg, registered in MSFS. See the
section Creating Dynamic Objects.

location LOCATIONREF Location to create the object. Optional: objects without a
location will be created at Null Island [0, 0] and may be
later moved by using move_object.

Special object variables
These variables are interpreted by the system in a special way.

Name Function

VAR 1
VAR 2

Mapped to simulation vars unique to the object:
VAR 1: (A:GENERAL ENG THROTTLE LEVER POSITION:1, percent)
VAR 2: (A:SPOILERS LEFT POSITION, percent)

These variables are unique for every object and will be available in the
model behaviors XML. This allows each object to have independent
visual states and behaviors.

COUPLED Object user coupling mode. When an object is coupled it will be
modified automatically based on the coupling state.

0: No coupling
1: Couple to hoist position

- Object will be continually snapped to the position below the hoist
2: Couple to external cargo position

- Object will be continually snapped to the position below the
cargo hook

3: External cargo position auto-couple armed
- Object will switch to coupling mode 2 automatically when within

range.
4: Firefighting target (fire)

- The user may use the Bambi bucket to reduce VAR 1 (quantity
of fire) for this target. VAR 2 is set to the most recent quantity
reduction by the user bucket dump.

5. Firefighting pool
- VAR 1: Radius of pool (METERS). VAR2: Depth of pool (FEET,

negative)

MODE Object mode. The mode is used to control the physics and behavior of
the object.

0: Hold position on ground
1: Repositioning mode

- Use LAT/LON to configure the next location, and then set mode
to 0 to switch back to ground hold.

2: 3-axis Velocity control
- Use VELOCITY X, VELOCITY Y and VELOCITY Z to control the

object physics over time
3: MSFS default Physics

WP INDEX Activation navigation index. Set index 1 to activate the waypoint engine
and cause the object to rotate on the yaw axis to orient such that
velocity z will drive the object to the waypoint.

0: not active
1-5: navigation to waypoint 1-5.

The waypoint engine will set the WP INDEX to 0 upon reaching a
situation where the next waypoint (WP INDEX + 1) is a waypoint at
location 0,0. The waypoint engine will also set VELOCITY Z to 0 at this
time.

VELOCITY X
VELOCITY Y
VELOCITY Z

Object velocities. Only applicable when MODE=2. These velocities will
be sent directly to MSFS to instruct the object movement.

THREAD
Threads are background command lists which execute independently of the currently active
objective. Threads may be used to schedule activities regardless of where the user is in the
objective list

interval milliseconds Update interval (higher is better for performance)

commands COMMANDLIST List of commands, execute in order.

OBJECTIVE
Your mission must have at least one objective or it will complete immediately after starting. The
objectives each have a list of commands and when one objective is completed the first

command in the next objective will be started. When the last command in the last objective
finishes, the mission is complete and will end.

title string Text to display to the user for this objective.

commands COMMANDLIST List of commands, execute in order.

Commands
Commands are executed one at a time from a command list, and each command may execute
nearly instantly or take some time to finish.

Control Flow

if
Choose between one set of commands or another set of commands based on a condition.

if: QUERY, then: COMMANDLIST,
else: COMMANDLIST

The IF statement will execute the subsequent command
list (either the then or else list) and then return
processing to the next command after the if. Nesting of
multiple IF statements is supported.

while
Continue executing the commands while the condition is true

while: QUERY, TEST, do: COMMANDLIST If the query+test evaluates to true then the
command list will be run one time, then the
query+test evaluated again.

Note your command list needs to have sleep
or other time-consuming commands or you
risk a busy loop or fresh data being
unavailable.

sleep
Delay for some time until executing the next command.

sleep QUERY Sleep for some amount of time in seconds.

sleep “forever” Sleep indefinitely

General

set
Set a variable in the global scope or on an object.

set {var: [“var_name”, “var_type”],
value: QUERY}

Set simulator variables.
- L:Vars, A:Vars
- H:Events, K:Events

set {object:”object_name”, var:
“var_name”, value: QUERY}

Set object-specific variables.

object_name is from the objects table.
var_name may be:
VAR 1
VAR 2
COUPLED
MODE
WP INDEX
VELOCITY X
VELOCITY Y
VELOCITY Z

set {object:”object_name”, var:
“var_name”, value: {location:
LOCATIONREF}}

Set location to an object-specific variable.

var_name must be empty (“”) to set LAT/LON or:
WP 1
WP 2
WP 3
WP 4

wait_for
Do not proceed until a specific condition is true.

wait_for: QUERY, TEST Compare QUERY to TEST and keep
checking until it is true, only then proceed.

Object & Thread Manipulation

create_object
Create an object immediately and insert it into the objects table

create_obejct: {name: “my_object”, title:
string, fallback_title: string, location:
LOCATIONREF}

Create a new object. The parameters have
the same meaning as creating an object
directly at mission start.

destroy_object
Remove an existing object

destroy_object: “my_object_name” Remove an object from the world and also
remove its name from the objects table.

After this call, It is safe to immediately create
a new object with the same name.

move_object
Move an object to a new location.

move_object: “object_name”,
to:LOCATIONREF

Move the specified object to the new location,
returning it to mode 0.

create_thread
Create a new background thread execution queue and start it immediately.

create_thread: {commands: COMMANDLIST,
interval: 100}

Create a new thread and insert its name into
the threads table. The parameters are the
same as starting the thread at the beginning
of the mission.

Cockpit Presentation

set_route
Set the map route (magenta line).

set_route LOCATIONREF Set the map route line to a single target

set_hover_display
Set the hover display (crosshairs) target and distance.

set_hover_display {range: QUERY, target:
LOCATIONREF}

Set hover display (crosshairs) target and
range.

Range units: Nautical Miles

set_hover_display {range: 0} Clear the hover display

set_df
Set the Direction Finder information. The DF displays a bearing pointer on the MFD in the
cockpit.

set_df: {location: LOCATIONREF, freq:
FREQ}

FREQ is a decimal value which is displayed
on the MFD.

set_message
Display a text message on the mission map

set_message: {text: “my message here”} Message will be displayed until the end of the
mission or until another set_message
replaces it.

set_message: {text: “my message here”,
timeout: 9000}

Timeout is in milliseconds, in the future it will
change to seconds.

set_message: {text: “”} Clear message.

set_ui
Set the bottom footer data in the mission app.

set_ui: {footer_left_label: string,
footer_left_value: string}

Set the label and value of the left footer cell.

set_ui: {footer_right_label: string,
footer_right_value: string}

Set the label and value of the right footer cell.

set_map
Draw icons and lines on the mission map.

set_map: {add: {line: {points:
[LOCATIONREF1, LOCATIONREF2, …],
stroke: { color: '#FF33FF', width: 3 }, id:
'my_route'}}}

Draw a line between two points.

set_map: {remove: {line: {id: 'my_route'}}} Remove previously drawn line.

set_map {add: {point: {location:
LOCATIONREF, id: “my_icon”, icon: URL}}}

Draw an icon at a point.

URL may be HTTPS or a data-uri.

set_map {update: {point: {id: “my_icon”, icon:
URL}}}

Update the icon URL for an existing point.

set_map: {remove: {point: {id: “my_icon”}}} Remove previously drawn point.

set_modal
Present a message to the user where they can pick a button to dismiss it.

set_modal {title: string, text: string, options: [
MODALBUTTON1, MODALBUTTON2, …]}

Title: title of message
Text: body of message
Options: Represents the buttons at the
bottom of the message. You must have at
least one for the user to be able to dismiss
the message, and you may have a maximum
of 4.

Set_modal MODALBUTTON
The options in the modal dialog.

{ text: string, commands: COMMANDLIST,
style: MODALSTYLE}

MODALSTYLE
(blank) theme default
“primary” Green
“Secondary” Gray
“Danger” Red

Other

create_location
Create a location based on a set of input configurations (zones).

create_location: “location_name”, zones:
[ZONE1, ZONE2, …]

Choose a random zone from the zones and
create a location based on its configuration.

create_location ZONE

zone: {zone_type: ZONETYPE, location:
LOCATIONREF, radius: RADIUS, minRadius:
MINRADIUS, commands: COMMANDLIST,
query: DATAQUERY

Choose a random zone from the zones and
create a location based on its configuration.

ZONETYPE: random_point or
query_clsoest_result or query_random_result

random_point: Generate a point anywhere
within the circle between MINRADIUS and
RADIUS.
query_closest_result
Query expanding outwards in concentric
circles until the query has suitable results.
query_random_result
Query using MINRADIUS and RADIUS to
discover ALL results within the circle and then
pick one at random.

RADIUS and MINRADIUS are in meters.

create_fire
Create a random cluster of fires based on the configuration

create_fire: LOCATIONREF, title: “object title”,
showIcon:true|false, size: FIRESIZE

FIRESIZE is the number of fires to spawn.

Title is the actual fire object to be spawned,
usually Airbus H145 Fire but can be an
alternate.

fn:all_fires_extinguished is paired with
create_fire and can be used to check for the
user having fought all of the fires.

remote_notify
Notify the remote mission server with some information from the simulator. Not applicable for
missions without a mission server.

remote_notify: “tag_name”, params: [QUERY,
QUERY, …]

Send a set of values to the remote mission
server.

Only applicable when a mission server is
used.

Predicates

QUERY
Look up a variable, generate a number, do math, or provide a hard-coded value. Do not confuse
a QUERY with a DATAQUERY.

{var: [“simvar_name”, “simvar_units”]} Get simulator variables:
- A:Vars, L:Vars

{rand: [QUERY(min), QUERY(max)]} Generate a random number between QUERY and
QUERY (min and max)

{clamp: [QUERY(value), QUERY(min),
QUERY(max)]}

Limit a value between min and max

{scale: [QUERY(a_value),
QUERY(a_min), QUERY(a_max),
QUERY(b_min), QUERY(b_max)]}

Convert a value (a_value) from one scale (a_min
to a_max) to another scale (b_min to b_max).

Values outside of the range (a_min to a_max) will

be clamped.

{round: QUERY, to: 1} Round a value to a specified number of digits.

{floor: QUERY} Floor a value (round down).

{add: [QUERY, QUERY]}
{subtract: [QUERY, QUERY]}
{multiply: [QUERY, QUERY]}
{divide: [QUERY, QUERY]}

Arithmetic operations.

{object:”object_name”, var: “distance”} Query a variable specific to an object.

var may be distance to query in nautical miles.
var may also be any other object variable.

{fn: “HOIST_SEND_TO_GROUND”,
params:[]}

Call special built-in functions:
HOIST_SEND_TO_GROUND
HOIST_REEL_UP_AND_STOW

{has_location: “location_name”} Test if a location exists or not. This is used for
example to allow optional base return legs in
default templates.

{location:LOCATIONREF} Only applies when a LAT/LON is expected (rare)

any number A number like 0 or -5 or 100.5 is a valid query
(and very common).

TEST
Test provides the logical operators to compare one query to another.

eq QUERY Equal to QUERY

ne QUERY Not Equal to QUERY

gt QUERY Greater than QUERY

gte QUERY Greater than or equal to QUERY

lt QUERY Less than QUERY

lte QUERY Less than or equal to QUERY

LOCATIONREF
Specify a specific location, or derive a location relative to another location.

[43.7927201, -122.734048, 359] [Latitude, Longitude, Heading]

“location_name” Lookup in locations table

{bearing: 0, dist: 0} Bearing and distance to user aircraft

{bearing: 0, dist: 0, object: “object_name”} Bearing and distance to object

{closest: [LOCATIONREF],
to:LOCATIONREF}

Calculate the closest location from a list of
locations, relative to the TO location.
The result is a location which can be set as a
waypoint.

This can be used to “choose the closest of
three targets” and build a dynamic waypoint
plan.

DATAQUERY
A data query is an OSM Overpass API query

“[out:json];node({{bbox}})[man_made=silo];ou
t center;”

Basic string query.

Test at Overpass Turbo:
1. https://maps.mail.ru/osm/tools/overpa

ss/
2. https://overpass-turbo.eu/

query: {
query:

"[out:json];(area({{bbox}})[amenity=hospital];
area({{bbox}})[aeroway=helipad];); out
center;",

"groups": [
{amenity: "hospital"},
{aeroway: "helipad"}

],
logic: {"intersection": 0.2}

}

Advanced intersection query.

Locate hospitals with a helipad 200 meters or
closer, otherwise exclude the result as not
applicable.

Dynamic Object Library

H145 Crew
The H145 Crew object contains the crew, pilots and stretcher. The visual states below may be
configured for the various standing/walking/waving states.

title $TITLE Crew

https://maps.mail.ru/osm/tools/overpass/
https://maps.mail.ru/osm/tools/overpass/
https://overpass-turbo.eu/

Airbus H145 ADAC Crew
Airbus H145 DRF Crew
Airbus H145 CMH Crew
Airbus H145 HeliOtago Crew
Airbus H145 Norsk Luftambulanse Crew
Airbus H145 Bundeswehr Crew
Airbus H145 CAL FIRE Crew
Airbus H145 San Diego Gas Electric Crew

NOTE: Livery authors should add their title to allow $TITLE Crew to work, which is
automatically replaced based on the livery name, and with a check for the livery author to have
provided a crew title replacement within their livery json file. See the main user guide livery
authors section for more information on this.

Visual states

VAR 1 -1: Hidden
0: HEMS standing
1: HEMS standing with (backpack)
2: HEMS walking
3: HEMS walking with (backpack)
4: HEMS crouching on ground
5: HEMS crouching on ground with (backpack)
6: HEMS crouching on ground with (backpack on ground)
7: HEMS waiting
8: stretcher no-patient
9: stretcher patient
10: stretcher walking no-patient
11: stretcher walking with patient
12: stretcher standing1 no-patient
13: stretcher standing1 with patient
14: pilot standing
15: pilot waving
16: pilot walking

VAR 2 Only applicable to VAR 1 values of 14-17.

0: Black pilot with headset
1: Black pilot with helmet
2: White pilot with headset
3: White pilot with helmet

H145 Injured Human
The injured human object is a human laying on the ground waiting for medical attention.

title Airbus H145 Injured Human

Visual states

VAR 1 -1: Hidden
0: Injured human in pain
1: Injured human packed into hoistable stretcher

H145 Waving Civilian
The waving civilian is a human standing waving, attempting to get help for his fallen friend.

title Airbus H145 Waving Civilian

Visual states

VAR 1 -1: Hidden
0: Civilian waving

NOTE: Use L:WAVING_CIVILIAN_STOP to 1 to stop waving

H145 Flare
This is a marine flare with orange smoke.

title Airbus H145 Flare

Visual states

VAR 1 -1: Hidden
0: Smoke auto (ON for high visibility setting, OFF for realism)
1: Smoke on (ON fo both setting positions)

Creating Custom Dynamic Objects
You may create your own dynamic mission objects that H145 can spawn. They can use the
same COUPED and MODE flags as the built-in objects.

Unpack the Mission Object Sample from Tools. Included in the sample is a blender asset
which has already been exported for you into the MSFSPackage, which is an SDK project which
you load in MSFS to compile the asset and produce a package for redistribution.

The procedure is as follows:
- Prepare an asset. Follow Blender Asset\Ambulance.blend as an example.

- Export your asset into
MSFSPackage\PackageSources\SimObjects\Airplanes\sample-ambulanc
e\model\H145_GenericVehicle

- In MSFS, enable developer mode and load the project
MSFSPackage\MSFS_DynamicObjectSample.xml

- Copy the output package hype-mission-dynamicobjectsample from
MSFSPackage\Packages to your Community folder.

Now the object is registered with the simulator and available for creation. Using Scenario Editor,
use the More Objects toolbar item and find Sample Ambulance in the list. The object can be
placed and used in H145 missions now.

In order to package multiple objects you will need to change the name. To change the name of
your object you will need to edit these locations under MSFSPackage\PackageSources:

File Text to change

ExtraFiles\hpgmission\packageObjects.objmeta Airbus H145 Ambulance Sample

SimObjects\Airplanes\sample-ambulance\aircraft.cfg Airbus H145 Ambulance Sample

Tip: isUserSelectable=1 will allow you
to see the object directly, and
isUserSelectable=0 will ensure that
your distributed package doesn’t have
extra stuff showing up in the aircraft
selector menu for the end user.

To combine multiple assets into one package, use MSFSLayoutGenerator.exe to update the
layout.json after combining all of the output folders.

Mission Server
A mission server may dynamically generate and apply mission descriptors as well as send other
commands and observe status. The server is essentially just a websocket server which listens
for the simulator to connect and then speaks a JSON RPC type protocol.

A very simple Mission Server Sample in node.js is included in the Tools folder.

Commands sent from the H145 to the mission server

{control_msg: “hello”} After connecting the H145 will alert you that it is ready for you
to send a mission

{control_msg:
“canceled_by_user”}

The H145 is alerting you that the user has selected another
mission and you are no longer active. The connection will
disconnect after this message

{remote_notify: “tag_name”,
params:[QUERY1,
QUERY2, …]}

Sent from the active H145 mission. This is data that you would
like to be advised about. Remote_notify can be used within
objectives or configured in a background thread to provide
notifications for specific conditions and data.

Commands sent from the server to H145

{load_mission:
MISSION_DESCRIPTOR}

Request the H145 to clear the current mission and
then load your new mission immediately.

{exec_commands: [COMMAND1,
COMMAND2, …]

Request the H145 to execute a free-standing
command list. This list executes in parallel with the
current objective and all background threads.

